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ABSTRACT

Accurate and reliable labeling of regions of interest (ROIs)

within structural magnetic resonance images (MRIs) is an im-

portant step in group analysis. Group registration does not

always yield accurate alignment of homologous regions. We

present an approach that distinguishes itself from other algo-

rithms by being concerned with a label which is of the highest

fidelity, while leaving ambiguous regions unlabeled. Regions

that are not deemed to be reliably labeled are not included

in group statistics. We will present results showing that our

method is an improvement over traditional multi-atlas vot-

ing schemes. We conclude with a pilot study of longitudinal

trends of cortical thickness in normal aging.

Index Terms— Brain, image segmentation, image regis-

tration, biomedical image processing.

1. INTRODUCTION

Recently, there have been several studies observing structural

changes within specific regions of interest (ROIs) in MR brain

images that are associated with both normal aging and neu-

rological disorders [1–5]. These regional studies are either

longitudinal (with respect to the individual) or cross-sectional

(exploring the population as a whole) and are carried out with

either a trained anatomist who manually labels structures [3,

5] or an automated labeling approach [2, 6]. Anatomists can

disagree on their labels, they tend to take a very long time

to label the images, and they are highly variable as individ-

uals and across anatomists. A popular automated approach

is the use of average map techniques (AMTs) [4, 7]. AMTs

align cortical surface models from multiple subjects and dis-

play results on a single representation of the cortical surface

with anatomical labels. The optimal approach for regional
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Fig. 1. Gyri-based labeling, shown on its cortical surface ex-

tracted by CRUISE [8].

cortical analysis remains unclear; it is our belief that more ac-

curate, consistent and detailed automatic labeling approaches

are needed to propel scientific studies.

Our method is a multiple-atlas based cortical surface seg-

mentation using a non-rigid registration algorithm based on

the Adaptive Bases Algorithm (ABA) [9]. The atlases we use

are manual gyral labels, Fig. 1 shows the labels on a corti-

cal surface representation of the gray matter (GM) and cere-

brospinal fluid (CSF) interface. Atlas based segmentation has

been widely used for many applications [10–12]. It has been

noted that with such methods there is always an increasing

marginal improvement in the segmentation of the subject with

each additional atlas that is used [13]. Non-rigid registration

is a computationally intensive task, so any marginal improve-

ment in the segmentation of the subject is offset by the amount

of time required to garner the improvement. We will there-

fore combine multiple atlas registrations in a novel way to

achieve improved results while avoiding unnecessary regis-

tration steps and wasted computation. In brief, our method

will use what we term a reliability map, pre-computed on the

atlases, to determine the labels on the subject. We do this by

registering atlases with the subject and then combining the re-
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Fig. 2. Reliability map shown on a partial inflated GM/CSF

interface. The partial inflation enables viewing of deep sulcal

regions. The black contours correspond to a reliability value

of 0.8.

liability maps and the labels of the atlases within the subject

space to determine the labels. Our methodology is volume

based, however we show results with a cortical surface repre-

sentation because of the gyral basis of the labels.

In the following section, we will describe our algorithm in

detail. Then we will provide results describing the accuracy

of our method in comparison to a traditional multi-atlas voting

scheme.

2. METHOD

Instead of generating coarse regions of interest (ROIs) [2],

the purpose of our labeling is to give as many correct labels

as possible. With voxels of the CSF/GM interface where there

is some degree of ambiguity, we will err on the side of caution

and leave the voxel unlabeled.

2.1. Reliability Map

The atlases we use to build our reliability map are T1-

weighted magnetization prepared rapid gradient echo (MP-

RAGE) data with two sagittal acquisitions being averaged to

increase the contrast-to-noise ratio. Originally the data con-

tained 33 labels per hemisphere, some of these labels were

determined to be inconsistently identified. Such labels were

merged with an appropriate adjacently labeled region, to form

a superset of 20 labels per hemisphere, Table 1 shows a list

of the labels. We used 17 such atlases to build our reliability

map; a more detailed description of the acquisition and how

the subjects were originally labeled is available in [14].

A reliability map RA(v) associated with an atlas brain,

A, has values [0, 1] on each voxel v of A, describing how

reliably this voxel can be mapped to a subject brain. We create

a reliability map for each atlas brain in the following manner:

Given N atlases, A1,A2, . . . ,AN with corresponding

labels Li(v) for the voxel v within Ai. We obtain RA1(v) by

registering A1 against each of A2, . . . ,AN , using the Adap-

tive Bases Algorithm (ABA). ABA registration maximizes

mutual information with an underlying deformation field

modeled on radially symmetric basis functions. We denote

by A1i, A1 registered to Ai, i = 2, . . . , N . L1i(v) is derived

by deforming L1(v) by the corresponding deformation field.

We then define RA1(v), as an evaluation of the alignment of

L1i(v) against Li(v), by

RA1(v) =

N∑
i=2

δ(L1i(v),Li(v))

N − 1
,

where, δ(a, b) is the Kronecker delta. A reliability value of

1 at a voxel means that the voxel has been mapped into the

correct region for the N − 1 atlases. For each atlas we can

compute this reliability map, relative to the other N − 1 at-

lases, before we try to label a subject data set. Fig. 2 shows

an example of a reliability map that has been mapped to the

GM/CSF interface from the 3D reliability map.

2.2. Labeling

For each atlas Ai we have labels, Li(v), and the reliability

map, RAi(v), for all voxels v of Ai. We then proceed to

label a given subject, S, using M atlases, with M < N , as

follows:

1. Register the M atlases to S and compute a voting score

on each voxel that receives a given label. Let LiS(v) de-

note the result of transforming the labels Li(v) into S using

the corresponding deformation field and RiS(v) denotes the

transformed reliability map. V(v|j) is the voting score that v
receives the label j and is defined as,

V(v|j) =
M∑
i=1

δ (LiS(v), j)RiS(v),

where j = 1, . . . , K, with K being the total number of labels

in the atlas. For each voxel choose a candidate label, l, defined

as, l = argmax {j : V(v|j)} .
2. For the candidate label, compute the average reliability

value,

R(v) =

M∑
i=1

δ (LiS(v), l)RiS(v)

M∑
i=1

δ (LiS(v), l)

.

Assign the voxel v with the label l if R(v) is larger than

a threshold t, otherwise we leave the voxel unlabeled. More

formally,

LS(v) =
{

l, if R(v) ≥ t,
0, otherwise.

We will discuss how to choose t in the next section. We

choose M so as to reduce the number of registrations required
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Fig. 3. % Area covered plotted against the % label error for

our method with 3 and 5 atlases and for VS with 5 atlases.

Our approach with 3 atlases is indistinguishable from the VS

method with 5 atlases.

Fig. 4. Thickness trends for four ROIs. The color bar on the

right is the scale for the change in thickness based on a simple

linear regression model. Areas in white are unlabeled and are

not accessed as part of the regression.

without affecting the accuracy of the results, see Fig. 3 for

example.

3. RESULTS

As an initial experiment we compare our algorithm against

some ground truth atlases. From the population of 17 data

sets that built our reliability map we draw an additional 17

subjects, different from the atlas data but acquired and labeled

in an identical fashion.

For comparison we implemented a voting scheme (VS)

[15] approach which registered M ′ MP-RAGE atlas subjects

to the 17 subjects to be labeled and assigned labels based on

a majority voting scheme with thresholding. Fig. 3 shows

the performance curves of the two labeling schemes were we

have varied the threshold of the voting scheme and the thresh-

old t in our approach to create these curves. Lowering the

thresholds gives larger labeled surface area while diminishing

the quality of those labels. Our approach when compared to

Table 1. LH AC and RH AC denote the left and right hemi-

sphere annual change, which is in mms per year. * corre-

sponds to a p value less than 0.05, ** a p value less than 0.01

and *** a p value less than 0.001.

Gyral Label LH AC RH AC
Superiortemporal -0.0340*** -0.0344***

Superiorfrontal -0.0315*** -0.03200***

Middletemporal -0.0284*** -0.0153**

Supramarginal -0.0280*** -0.0188***

Inferiorfrontal -0.0269*** -0.0222***

Inferiorparietal -0.0256*** -0.0250***

Parsorbitalis -0.0239*** -0.0243***

Middlefrontal -0.0227*** -0.0281***

Superiorparietal -0.0222*** -0.0192***

Inferiortemporal -0.0199*** -0.0177**

Postcentral -0.0192*** -0.0130***

Precentral -0.0161*** -0.0169***

Cingulate Region -0.0161*** -0.0152***

Lingual -0.0154*** -0.0108**

Precuneus -0.0149*** -0.0124**

Lateraloccipital -0.0132*** -0.0140***

Orbitofrontal -0.0119** -0.0112**

Fusiform -0.0119* -0.0072

Cuneus -0.0072*** -0.0056*

Parahippocamal -0.0034 -0.0094

VS with the same number of atlases (5) improved the covered

area by 5% at the same error level. Our method with M = 3
is almost identical to VS with more atlases, M ′ = 5.

We demonstrate the usefulness of these reliably labeled

regions by considering the effects of aging on the thickness

of the cerebral cortex. We use the same data as [1], in which

the authors semi-automatically labeled 4 sulcal regions, per

hemisphere, on 35 subjects (16 men and 19 women) from the

Baltimore Longitudinal Study of Aging (BLSA) [16], with

subjects ages ranging from 50 to 84 years. Five acquisitions

for each subject, with an approximate one year interval be-

tween scans, were labeled using our approach. Our reliability

map is the same as used in the previous experiment, with a

threshold t = 0.80. Thickness measurements were taken in

each of our ROIs based on [17]. We then access the relation-

ship between the ROIs median thickness and age, in order to

match the statistical analysis used in [1], we used a simple

linear regression model. Annual changing rates of thickness

in millimeters per year are shown in Fig. 4.

The previous work on this data could only identify two re-

gions which showed statistically significant changes in thick-

ness, in contrast we have 37 regions which show significant

changes. The regions and the change in thickness are shown

in Table 1, significance of the p-value is also denoted. The

thinning rate for the postcentral and precentral gyrus corre-
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sponds with the results from the earlier study for the ROI re-

ferred to as the central sulcus. The thinning trends also agree

with the common belief that there is more gray matter loss

in the association cortex than the primary sensory cortex. In

particular the prefrontal, entorhinal and temporal cortices are

the most severely affected by aging [18, 19].

4. DISCUSSION AND CONCLUSION

We have presented a fully automated gyral labeling scheme

which is an improvement over the traditional voting scheme

approach. Our algorithm also has computational benefits over

other multi-atlas approaches. By incorporating the reliability

map we can reduce the number of registrations required while

not impacting the quality of the results. This method shows

potential for improving longitudinal based studies of aging,

not just for thickness as in our experiments but for all cortical

related measures that require ROIs.
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